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Abstract—An important element of social choice theory
are impossibility theorems, such as Arrow’s theorem [1] and
Gibbard-Satterthwaite’s theorem [2], [3], which state that
under certain natural constraints, social choice mechanisms
are impossible to construct. In recent years, beginning in Kalai
[4], much work has been done in finding robust versions of
these theorems, showing that impossibility remains even when
the constraints are almost always satisfied. In this work we
present an Algebraic scheme for producing such results. We
demonstrate it for a variant of Arrow’s theorem, found in
Dokow and Holzman [5].

Keywords-Social Choice; Arrow’s theorem; Robust impos-
sibility theorems; Discrete Fourier analysis; Representation
theory;

I. INTRODUCTION

Social choice deals with aggregation of opinions of indi-
viduals in a society into a single opinion. There are several
important impossibilty theorems in the field, stating that
aggregation mechanisms satisfying some natural conditions,
are dictatorial (dependent on the opinion of only one voter).

First amongst these theorems was Arrow’s theorem. Let
there be a set of n individuals, who wish to decide on
the ranking of m alternatives. Each individual has his own
full ranking of the alternatives. Let Lm be the set of full
transitive linear orders on [m] and Om be the set of all
anti symmetric relations on [m]. A social welfare function
(SWF) is a function f : Ln

m → Om, that maps the individual
rankings of the n voters into an aggregated relation. A SWF
that always returns a transitive order (is into Lm) is called
consistent.

Definition 1.1: A SWF f is called Independent of
Irrelvant Alternatives (IIA), iff for every 2 alternatives a, b,
the aggregated prefernece between a and b is only dependent
on the individual prefernces between a and b.

Theorem 1.2: (Arrow) For m ≥ 3, every function
that agrees with unanimous votes, is consistent and IIA is
dictatorial.

Another theorem of similar flavour is Gibbard-
Satterthwaite’s theorem (GS), known to be strongly
connected to Arrow’s theorem. It deals with a setting
in which, the voters only wish to choose one of the m
alternatives. A social choice function (SCF) is a function

f : Ln
m → [m], that maps the individual rankings of

n voters into an aggregated choice. GS deals with the
game-theoretic notion of strategy proofness, where no voter
has an incentive to misreport her true opinion and obtain a
better result from her perspective.

For the formal definition of strategy-proofness, we intro-
duce some notations. For a profile x ∈ Ln

m, x = (x1, ..., xn)
and a voter i ∈ [n], we denote x = (x−i, xi), where x−i

indicates the votes of all voters except the i’th. For y ∈ Lm,
we use <y to indicate the corresponding order. We similarly
define >y,≥y,≤y .

Definition 1.3: A SCF f is called strategy-proof, iff

∀i ∈ [n], x−i ∈ Ln−1
m , xi, y ∈ Lm, f(x−i, xi) ≥xi f(x

−i, y)

Theorem 1.4: (Gibbard-Satterthwaite) for m ≥ 3, a social
aggregator f : Ln

m → [m] that is onto and strategy-proof is
dictatorial.

The connection between the notions of strategy proofness
and IIA was demonstrated in [6], [7], and the connection
between the proofs of these theorems was demonstrated in,
e.g., [8]. However a single scheme that deals with both the
different settings (SWF vs. SCF) and the different constraints
(IIA vs. strategy-proofness) has not been shown.

In recent years, there was work done in providing analyti-
cal proofs for these theorems, and finding robust versions of
them - i.e. showing that aggregators that almost satisfy the
constraints (consistency, IIA, strategy-proofness) are close
to fitting the classification (dictatorial).

The relaxation of the consistency constraint in Ar-
row’s theorem was initiated in Kalai[4] and culminated in
Mossel[9]. See also [10], [11], [12]. The same was done
for several examples in the judgement aggregation setting
in [13]. All of these works assumed complete IIA and
relaxed consistency, despite the fact that consistency is a
more natural constraint than IIA. However, a tradeoff of
transforming almost-IIA and consistent functions to IIA and
almost consistent functions has been established in, e.g.,
[13].

Relaxing the strategy proofness constraint in GS has some
important computational implications. A robust Gibbard-
Satterthwaite result with appropriate parameters, will show
that a random manipulation attempt on a far from dictatorial



SCF has a non-negligible probability of being beneficial.
Therefore, we would be able to deduce that the problem
of finding a beneficial manipulation is average-case easy,
despite the fact that it is NP hard for many natural SCF’s.
In [14] such a result was achieved, but only for functions
with m = 3, and in [15] only for neutral functions with
m > 3. See also [16].

Our work continues this line of research. We present an
algebraic approach to these types of questions that can tackle
many of them. In this work we will apply this scheme
on a variant of Arrow’s theorem. Our work relaxes an
independency constraint similar to IIA and is the first work
to tackle an independency type of constraint directly.

The techniques are novel. The algebraization of the
problem uses tensor algebra. The diagonalization involved
uses representation theory of the Symmetric Group. These
techniques can be generalized to a wide class of problems,
not limited to Social Choice. Specifically, they are a gener-
alization of techniques used, up to now, mainly for Boolean
functions.

II. RESULTS

In this paper we present a robust impossibility theorem in
the flavour of Arrow’s and Gibbard-Satterthwaite’s theorems.
We analyze a constraint that is a variant of IIA. We show
the impossibility of constructing functions that are far from
dictatorial and almost always conform to this constraint.
We present a single proof that deals with functions with a
spectrum of ranges, from functions returning a full ranking
(SWFs) to functions returning one alternative (SCFs), and a
plethora of ranges in between. The result can be interpreted
as a 2-query dictatorship tester with full completeness.

In our settings, we deal with aggregation of rankings of
m alternatives. A ranking is a permutation x ∈ Sm. We will
use the convention x(rank) = name.

For presentation sake, we shall begin with the definition
of the constraint when used for functions returning a full
ranking (SWFs) and state the corresponding impossibility
theorem without robustness. The more complicated defini-
tions and theorems will follow.

A. Main Theorem

Definition 2.1: A social aggregator f : Snm → Sm satisfies
Independence of Rankings (IR) iff the aggregated ranking
of the j’th alternative is dependent only on the individual
rankings of the j’th alternative.

∀x, y ∈ Snm, j ∈ [m],(
∀i ∈ [n], x−1

i (j) = y−1
i (j)

)
⇒ f(x)−1(j) = f(y)−1(i)

This constraint requires independency of rankings instead
of independency of pairwise preferences required in IIA.
This constraint was discussed in [5], in the context of non-
binary judgement aggregation.

As in IIA, this definition compares voting profiles which
may differ in any number of votes. Throughout this paper,
we shall use an alternative, equivalent definition, that com-
pares inputs that differ only in at most one vote, similarly
to strategy-proofness:

Definition 2.2: A social aggregator f : Snm → Sm satisfies
Independence of Rankings (IR) iff

∀i ∈ [n], j ∈ [m], x−i ∈ Sn−1
m , xi, yi ∈ Sm,

x−1
i (j) = y−1

i (j) ⇒ f(x−i, xi)
−1(j) = f(x−i, yi)

−1(j)

It is easy to show, via a hybrid argument, that these two def-
initions are equivalent, i.e., a function conforms to definition
2.1 iff it conforms to 2.2. The corresponding impossibility
theorem is

Theorem 2.3: For m ≥ 3, a social aggregator f : Snm →
Sm that is IR is either a constant function or dictatorial of
the following form: there exists a voter i and a constant
permutation y of the rankings such that f(x) = y ◦ xi.

In [5], a similar impossibility theorem was shown, using
purely combinatorial arguments. There are several differ-
ences between theorem 2.3 and the result in [5]. That
result required additional constraints on the function. Those
constraints also limited the constant permutation y from
being anything but the identity permutation. It is important
to note, however, that [5] dealt with a much wider setting.

B. Robust Impossibility Theorem

A robust impossibility theorem means that when the
constraint is almost satisfied, then the function is almost
dictatorial. A theorem relaxing the independency constraint
(IR or IIA) in the context of SWF has not been obtained
before.

To ease notation, we define the predicate

Q(x, i, j, yi, f) =

¬
(
x−1
i (j) = y−1

i (j) ⇒ f(x−i, xi)
−1(j) = f(x−i, yi)

−1(j)
)

Where x ∈ Snm, i ∈ [n], j ∈ [m], yi ∈ Sm, f : Snm → Sm.
We also define the quantity

IR(f) =
∑

i∈[n],j∈[m]

Prx−i∈Sn−1
m ,xi,yi∈Sm (Q(x, i, j, yi, f))

IR(f) measure the normalized number of unsatisfied IR
constraints.

Definition 2.4: A social aggregator f : Snm → Sm is
called ϵ− IR iff

IR(f) ≤ ϵ

Theorem 2.5: For m ≥ 3, a social aggregator f : Snm →
Sm that is ϵ-IR is O(poly(m)ϵ)) close to a function that
is either a constant function or dictatorial of the following
form: there exists a voter i and a constant permutation y of
the rankings such that f(x) = y ◦ xi.



C. A Spectrum of Ranges

As stated earlier, we will also deal with a setting where
the aggregated opinion is not a full ranking, but a partial
ranking. Let H ⊆ Sm be a subgroup of Sm. We call it a
fixing subgroup if it fixes some subset of m. An H-social
aggregator (H-SA) is a function f : Snm → Sm/H . Many
types of functions fall under this scheme. Examples are:

• For H as the trivial group, H-social aggregators are
SWFs.

• For H as the group of permutations fixing the element
1, H-social aggregators are SCFs.

• For H as the group of permutations fixing the set
{1, 2, 3}, H-social aggregators are functions returning
triumvirates.

• For H as the group of permutations fixing the sets {1}
and {2, 3}, H-social aggregators are functions returning
a president and two vice-presidents.

The definition of IR can be extended to H-social aggregators
in the following manner:

Definition 2.6: Let H ⊆ Sm be a fixing subgroup of Sm.
For H1 a coset of H in Sm, define the j-profile of H1 as
the multiset H−1

1 (j) =
{
y−1(j)|y ∈ H1

}
.

The definition of the predicate Q is naturally extended H-
SA’s, by taking definition 2.6 into account:

Q(x, i, j, yi, f) =

¬
(
x−1
i (j) = y−1

i (j) ⇒ f(x−i, xi)
−1(j) = f(x−i, yi)

−1(j)
)

Definition 2.7: Let H ⊆ Sm be a fixing subgroup of
Sm. An H-social aggregator f satisfies Independence of
Rankings (IR) iff the aggregated j-profile is dependent only
on the individual rankings of the j’th alternative.

∀i ∈ [n], j ∈ [m], x−i ∈ Sn−1
m , xi, yi ∈ Sm,

¬Q(x, i, j, yi, f)

We shall leave the exact definitions of IR(f) and of an ϵ-
IR H-social aggregator to a later part of the paper. The
impossibility theorems also extend to H-social aggregators.

Theorem 2.8: Let H ⊆ Sm be a fixing subgroup of Sm.
For m ≥ 3, an H-social aggregator f that is IR is either a
constant function or dictatorial of the following form: there
exists a voter i and a constant permutation y of the rankings
such that f(x) = Hy ◦ xi.

Theorem 2.9: Let H ⊆ Sm be a fixing subgroup of
Sm. For m ≥ 3, an H-social aggregator f that is ϵ-IR is
OH(poly(m)ϵ) close to a function that is either a constant
function or dictatorial of the following form: there exists a
voter i and a constant permutation y of the rankings such
that f(x) = y ◦ xi.

III. STRUCTURE OF THE PROOF

We give here a short exposition of the proof. For simplic-
ity, we shall refer here to the basic form of the Main theorem
(theorem 2.3), where the function is a SWF. To simplify the
notation, we shall also use in this section definition 2.1 for
IR, instead of 2.2, which is the definition we shall use in
the rest of the paper.

We shall treat this problem as a contraint satisfaction
problem (CSP). We shall use definition

Find all functions f : Snm → Sm s.t.
IR: ∀j ∈ [m], x, y ∈ Snm,

x−1(j) = y−1(j) ⇒ (f(x))−1(j) = (f(y))−1(j)

A CSP has a generic algebraic encoding. The function f
can be encoded as a function returning a vector in RSm ,
which is the characteristic vector of the singleton {f(x)}.
This encoding can be interpreted as a tensor F ∈ RSnm×Sm ,
with 2 indices x ∈ Snm, v ∈ Sm

Fx,v = 1v=f(x).

The constraints can be algebraically encoded using a matrix
that represents their truth table, or, in our case, since we
want to count the number of constraints unsatisfied, the
truth table of their negation. We use a block matrix. For
every alternative j ∈ [m], we define a constraint matrix Lj .
For every two inputs x, y ∈ Snm, the (x, y)’th entry of the
matrix will be a matrix in RSm×Sm . This matrix will be the
truthtable of the negation of the constraints concerning x, y
and j. Explicitly,(((

Lj
)
xy

)
vxvy

)
= 1¬(x−1(j)=y−1(j)⇒(v−1

x (j)=v−1
y (j)))

where j ∈ [m], x, y ∈ Snm and vx, vy ∈ Sm.
We can use these block matrices in a quadratic form to count
the number of unsatisfied constraints. Define L =

∑
j L

j .
Since the Lj’s are the truth tables of the negation of the
constraints, it follows that the quadratic form

FLF t

counts the number of constraints unsatisfied.
The CSP under this encoding takes the form

Find all F ∈ RSnm×Sm s.t.
Consistency: ∀x ∈ Snm,

Fx∗ is a char. vec. of a singleton
IR: FLF t = 0

The proof unfolds as follows:
• We show that L ≽ 0 (PSD), i.e. FLF t ≥ 0 for every

F . Therefore, the functions that satisfy IR are precisely
the kernel of L.

• Explicitly find the kernel of L, by diagonalizing it.



• Show that all consistent functions in the kernel of L
are dictatorships.

Naturally, functions that are ϵ-IR are L2 close to the kernel
of L, depending on the spectral gap of L. We shall generalize
a theorem of Friedgut, Kalai and Naor [17] to prove that
such functions, that are also consistent, are L2 close to
dictatorships, to obtain the robustness result.
For H-SA, we shall encode f to return characteristic vectors
of cosets of H , normalized so that their L1 norm equals 1.
We shall call such vectors H coset vectors. As a tensor F ,
this encoding takes the form:

Fx,v =
1

|H|
1v∈f(x)

The same Laplacian L encodes the notions of IR and ϵ-
IR for H-SA, but the consistency constraint changes. The
algebraic CSP for H-SAs is

Find all F ∈ RSnm×Sm s.t.
Consistency: ∀x ∈ Snm, Fx∗ is an H-coset

vector
IR:

∑
j FLjF = 0

The introduction of H-SAs does not insert any new elements
to the proof.
In subsection V-A, we shall construct and diagonalize L for
functions with 1 voter. We shall then use this construction
and its disgonalization to construct a Laplacian for any
number of voters n, in subsection V-B, and prove the result.

IV. REPRESENTATION THEORY

A representation is a Homomorphism ρ from a group
G to GLd(C), the group of complex d-dimensional square
matrices. d is called the dimension of the representation
d(ρ). A representation is called irreducible if it is not similar
to a direct sum of 2 representations.

For a finite group, there is a one-to-one correspondence
between the conjugacy classes of the group and irreducible
representations (up to similarity). The conjugacy classes of
Sm have a certain natural ordering which we will not discuss
here. We shall denote the number of conjugacy classes of Sm
as [Sm]. For a conjugacy class k ∈ [[Sm]], its corresponding
irreducible representation will be denoted as ρk.

It is known that in the symmetric group, we can choose
a basis under which all representations have real, unitary
matrices as values. We assume we use such a basis.

The defining representation of the symmetric group Sm
is the permutation representation P of dimension m.

P (x)ij = 1x(i)=j

In this work we also use two irrreducible representation
corresponding to the first 2 conjugacy classes, in their natural
order. These are the trivial representation ρ0, which is of
dimension 1 - ρ0(x) = 1, and ρ1 which is of dimension
m− 1.

It is known that P is similar to ρ0 ⊕ ρ1, i.e., there exists
an orthonormal m×m matrix H such that

P (x) = H
(
ρ0(x)⊕ ρ1(x)

)
Ht

Schur’s orthonormality states that the vectors of the form
ρkij are orthogonal, (but not necessarily orthonormal)∑

x

ρk1(x)i1j1ρ
k2(x)i2j2 = δk1k2δi1i2δj1j2

m!

d(ρk1)

It is easy to show that the first column of H is the
normalized all ones vector. This is due to the fact that
the all ones vector is an eigenvector of all permutation
matrices. Therefore, H is of the following form (where C
is a m× (m− 1) matrix, and the Ci’s are its rows)

H =


1√
m
...
1√
m

C

 =


1√
m

C1

...
...

1√
m

Cm

 (1)

V. THE PROOF

In this section we present a more detailed version of the
proof, divided into lemmas. The actual proofs of the lemmas
will appear in section VI.

A note on notation: The constructions used in the proof
use block matrices, which are essentialy tensors. There are
dedicated notation systems for use with tensor operations.
Such are Einstein’s convention, and Penrose’s graphical
notation. Each method has its own benefits and drawbacks.
Since these dedicated notations are seldom used in the CS
community, we choset to present the proof using the classical
matrix notation, despite it being less suitable for our needs.
This choice made a few of the statements more cumbersome.
Whenever the phrase ”matrix parsed as a vector” or the trace
operator appear in the text, they are merely artifacts of the
notation.

A. One Voter Functions

We begin with the analysis of social welfare functions on
one voter f : Sm → Sm. We construct in this section a
constraint quadratic form as mentioned in section III, and
diagonalize it.

Let Xj be the matrix X ∈ RSm×Sm ,

Xj
xy = 1x−1(j)=y−1(j) = 1x−1y(j)=j .

Let X̄j be its complement X̄j
xy = 1 − Xj

xy . We will use
the vector encoding described in section III, Fx,v = 1v=f(x)

(or the corresponding definition for H-social aggregators).
IR(f) is equivalent to a quadratic form based on the

truthtable of the constraints, given in the following lemma:
Lemma 5.1: Let L′j = Xj ⊗ X̄j , and L′ =

∑
j L

′j , then

IR(f) =
1

|Sm|2
FL′F t



Xj is the adjacency matrix of the Caley-like graph1

Γ(Sm,Sjm), where Sjm is the subgroup of Sm of permu-
tations fixing j. A quadratic form based on the Laplacian of
that same graph is more suitable for our purposes, because
it is PSD. The Laplacian of that graph, Y , is given by

Y j = (m− 1)!I −Xj

The corresponding quadratic form is given in the following
lemma. The quadratic forms given in lemmas 5.1 and 5.2
are equivalent when F represents a consistent function. This
quadratic form also works for H-social aggregators.

Lemma 5.2: Let L′′j = Y j ⊗Xj , , and L′′ =
∑

j L
′′j ,

then

IR(f) =
1

|Sm|2
FL′′F t

For H-SA, IR(f) is defined via the quadratic form defined
in lemma 5.2:

IR(f) =
∑
j∈[m]

Ex,y∈Sm1x−1y(j)=(j)Eh1,h2∈H

(
1(f(h1x))−1(f(h2x))(j)=j − 1(f(h1x))−1(f(h2y))(j)=j

)
.

We still need to show that the definition of IR H-SAs
(definition 2.7) is equivalent to the condition IR(f) = 0
(according to lemma 5.2).

Claim 5.3:: Let H ⊆ Sm be a fixing subgroup of Sm. An
H-social aggregator f satisfies IR iff IR(f) = 0.

Since X is the adjacency matrix of a Caley-like graph,
it can be decomposed via the representations of the sym-
metric group. It turns out that all the relevant informa-
tion lies in its ρ1 component. This leads to a simplified
quadratic form, used with a different encoding for f . Let
g : S1m → R(m−1)×(m−1) be a an encoding of f such that
g(x) = ρ1(f(x)). A vector form of g is a block vector G
whose each entry is a m − 1 × m − 1 matrix Gx = g(x).
(For H-SAs, g(x) = Ey∈f(x)ρ

1(y)).
The corresponding quadratic form is
Lemma 5.4: Let Lj = Y j ⊗Dj , where Dj = Ct

jCj (See
1 for the definition of C), and L =

∑
j L

j , then

IR(f) =
1

|Sm|2
tr(GLGt)

We partially diagonalize L in the following lemma, de-
composing it to eigenspaces.

Lemma 5.5:

L =
∑

r∈[[Sm]]

d(ρr)t̃r
(
(I ⊗ ρr) L̂(r)

(
I ⊗ (ρr)t

))
1We use the term Caley graph even though Sjm is not a set of generators

as this property is irrelevant for our purposes.

where for a block matrix M , t̃r(M) is the matrix
t̃r(M)xy = tr(Mxy) and

L̂(0) = I · 0 , L̂(r > 1) = I ⊗ I · 1

m

L̂(1) =
1

m− 1

m− 1

m
I ⊗ I −

∑
j

Dj ⊗Dj


L̂(1) is the only non diagonal term in lemma 5.5. The

diagonalization of L̂(1) is given by:
Lemma 5.6: L̂(1) has 3 orthogonal eigenspaces whose

dimensions are 1,m − 1, (m − 1)2 − m. Denote their cor-
responding basis matrices as U0, U1, U2. The corresponding
eigenvalues are 0, 1

m(m−1) ,
1
m . The eigenvectors are vectors

of size (m−1) · (m−1). When read as a (m−1)× (m−1)
matrix, U0 is the identity matrix.

This diagonalization proves that L is PSD and determines
its kernel, which is the space of IR functions. This is
summarized in this corollary:

Corollary 5.7: : If g : Sm → Rm−1×m−1 is the ρ1

encoding of an IR function, then there exist (m−1)(m−1)
sized vectors a and b (that can be view as (m−1)×(m−1)
matrices A and B) such that

gx = bρ0(x) + t̃r
(
(aU t

0)(I ⊗ ρ1(x)
)
= B +Aρ1(x)

B. Many Voter Functions

The quadratic form for IR(f) for functions on n voters
is constructed using the quadratic form for 1 voter, in the
following lemma:

Lemma 5.8: For a function f : Snm → Sm, let G be as
before, the encoding of f :

Gx = ρ1(f(x)) = Ey∈f(x)ρ
1(y)

Let
Ln,j,i = I⊗i−1 ⊗ Y j ⊗ I⊗n−i ⊗Dj

Ln,j =
∑
i

Ln,j,i Ln =
∑
j

Ln,j

Then the number of unsatisfied constraints is

IR(f) =
1

|Sm|n+1
GLnG

We can diagonalize Ln based on our diagonalization of L:
Corollary 5.9:: The diagonalization of Ln is given by:

Ln =
∑

r̄∈[[Sm]]n

d(ρr̄)t̃r
((

ρr̄
)
L̂n(r̄)

(
ρr̄
)t)

The L̂n coefficients are deduced from the 1 voter L̂’s.
The L̂n coefficients are matrices which are not necessarily

diagonal. The following lemma partly characterizes their
diagonalization, in a manner that suffices for our needs.

Lemma 5.10:



1) If there exists any coordinate i ∈ [n] for which ri > 1

then L̂n(r̄) ≽ 1
mI ⊗ I

2) Otherwise, if there exist at least 2 coordinates i ∈ [n]

for which ri = 1 then L̂n(r̄) ≽ O
(

1
m2

)
I ⊗ I

3) Otherwise, if there exists exactly 1 coordinate i ∈ [n]

for which ri = 1 then L̂n(r̄) = L̂(1) has a 0
eigenvalue corrsponding to the eigenvector U0 (as
shown in lemma 5.6).

4) Otherwise, L̂n(r̄) = 0.
The kernel of Ln fully characterizes the functions that are

IR:
Corollary 5.11::
• The kernel of L is only functions of the form

g(x1, ..., xn) = B +
∑n

i=1 A
i · ρ1(xi)

• The spectral gap is 1
O(m2) .

To finish the proof of theorem 2.3, we need to show that
the intersection of the kernel of Ln with the consistency
constraint, includes only dictatorships. We don’t need to use
the consistency constraint to its full capacity. All we need
to use is the quadratic constraint that ∀x, g(x)gt(x) = M ,
where M is some constant matrix. This constraint is valid
for any H . For instance, if f is a SWF (H is the trivial
group), then since ρ1 is unitary, ∀x, g(x)gt(x) = I .

Corollary 5.12: : IR functions which are consistent are
dictatorships.

C. Robustness

The spectral gap of Ln determines the correlation between
IR(F ) and the L2 distance between f and the kernel of Ln.

Corollary 5.13:: If IR(f) ≤ ϵ, then there exists a function
g in the kernel of Ln such that ∥f − g∥22 ≤ O(m2)ϵ.
ϵ-IR functions are L2-close to the kernel of Ln. That

kernel is a linear subspace of the functions whose Fourier
coefficients are supported on the first 2 levels. Consistent
functions obey some pointwise quadratic constraint.

In [17]. it was shown that functions on n Boolean vari-
ables, whose Fourier coefficients are concentrated on the first
2 levels, and whose output is Boolean (which is a pointwise
quadratic constraint) are close to being dictatorships. We
adapt this theorem to our setting. From it we deduce our
main thoerem. Its proof is outlined in section VII.

VI. PROOFS FOR SECTION V

A. Proofs of the Lemmas for 1 voter functions

Proof of lemma 5.1: This is the straightforward definition
of the anti-constraints. Recall that p ; q is true iff p = true
and q = false.

FL′F t =
∑

jxvxyvy

FxvxX
j
xyX̄

j
vxvyFyvy =

∑
jxvxyvy

1vx=f(x)1x−1(j)=y−1(j)1v−1
x (j)̸=v−1

y (j)1vy=f(y) =

∑
jxy

1x−1(j)=y−1(j)1f(x)−1(j)̸=f(y)−1(j)

Proof of Lemma 5.2: Essentialy, one needs to show that
the expressions ∑

jxyvxvy

Fxvx

(
Xj

xy · 1
)
Fyvy

and ∑
jxyvxvy

Fxvx

(
(m− 1)!δxy ⊗Xj

vxvy

)
Fyvy

are equivalent when F is consistent. Since ∀x,
∑

v Fxv = 1,
the first expression translates to∑

jxy

Xj
xy = m ·m! · (m− 1)! = m!2

Since the diagonal of Xj , for every j, is all ones, the second
expression is∑

jxyvxvy

Fxvx

(
(m− 1)!δxy ⊗Xj

vxvy

)
Fyvy =

∑
jxvxvy

Fxvx

(
(m− 1)!Xj

vxvy

)
Fxvy =

∑
jx

((m− 1)!1) = m ·m! · (m− 1)! = m!2

Before we carry on, this is good place to recall H and
C from equation 1. Since H is orthonormal, we can easily
deduce the following:

Claim 6.1::

CCt = I − J

m
CtC = I

1C = 0

Proof of Lemma 5.4: We begin by writing an explicit
expression for X . We use P , the defining representation
of Sm. A permutation x has a fixed point j iff (Px)jj is 1.
Therefore,

Xj
xy = (Px−1y)jj

Recall that Px = H(ρ0⊕ρ1)Ht, and that H is orthonrmal.
Therefore

Xj
xy = (Pxy−1)jj =

(
H
(
ρ0(xy−1)⊕ ρ1(xy−1)

)
Ht
)
jj

We will use the vectors defined by the representations ρ0 and
ρ1 as diagonalization for L. First though, we wish to simplify
the expression a bit. Recall H =

(
1√
m

C
)

, Therefore

Xj
xy =

(
1ρ0(xy−1)1t

m
+ Cρ1(xy−1)Ct

)
jj



We will now show that we can eliminate the summand
corrsponding to ρ0 in the inner matrices in L, assuming our
function F is consistent. Recall ρ0x = 1x.

Lj
xyvxvy

=
(
Y j ⊗Xj

)
xyvxvy

=

Y j
xy ·

(
1ρ0(vxv

−1
y )1t

m
+ Cρ1(vxv

−1
y )Ct

)
jj

In our quadratic form, the summand corresponding to ρ0 is

∑
jxyvxvy

Fxvx

Y j
xy ·

(
1ρ0(vxv

−1
y )1t

m

)
jj

Fyvy

Since F is consistent, and ρ0(vxv
−1
y ) = ρ0(vx)ρ

0(v−1
y ) =

1vx1vy , this is equal to∑
jxy

1x

(
Y j
xy

1j1j
m

)
1y = 0

Therefore, removing this expression from L′′ yields

IR(f) =

∑
jxyvxvy

FxvxY
j
xy

(
Cρ1(vx)ρ

1(v−1
y )Ct

)
jj
Fyvy

|Sm|2

We can denote Gx =
∑

v Fxvρ
1(v), and the qudaratic form

becomes

IR(f) =

∑
jxy tr

(
Gx

(
Y j
xy(CCt)jj

)
Gy

)
|Sm|2

Proof of claim 5.3 In the proof, we shall use the expression
for IR(f) from lemma 5.4. It is easier to understand the
action of L when decomposing it to matrices that act on
pairs of inputs. Define the matrix Zj,x,y to be the Laplacian
of the graph whose vertices are the elements of Sm and has
at most one edge, connecting x with y iff x−1(j) = y−1(j).
Clearly, Y j =

∑
(x,y)∈(Sm2 )

Zj,x,y. It is also easy to see
that the diagonalization of the Z’s is given by Zj,x,y =
1xy−1(j)=jd

x,ytdx,y where dx,y is a vector that has 1 in x,
−1 in y and 0 otherwise. We shall now use this composition
to show how the expression tr

(
GLjGt

)
compares pairs of

inputs.

tr
(
GLjGt

)
=

∑
(x,y)∈(Sm2 )

tr
(
G
(
Zj,x,y, ⊗Dj

)
Gt
)
=

∑
xy−1(j)=j

tr
(
G
(
dx,yt ⊗ Cjt

)
·
(
dx,y ⊗ Cj

)
Gt
)
=

∑
xy−1(j)=j

tr
(
(g(x)− g(y))Cjt · Cj (g(x)− g(y))

t
)
=

∑
xy−1(j)=j

⟨
Cj (g(x)− g(y))

t
, Cj (g(x)− g(y))

t
⟩

To finish the proof, we shall show that there is a one-to-
one mapping betwen the j-profile of the coset f(x) and the
term Cjgt(x). Clearly, the normalized characteristic vector
of the j-profile of g(x) is ej

(
Ey∈g(x)P

t
y

)
, where ej is the

j’th unit vector. Since the matrix H is regular (orthonormal),
multiplying this vector by H is a one-to-one mapping, which
gives:(

ejEy∈g(x)P
t
y

)
H =

(
ejH

(
1⊕ gt(x)

)
Ht
)
H =

ejH
(
1⊕ gt(x)

)
=

(
1√
m

Cj

)(
1⊕ gt(x)

)
=

(
1√
m

Cjgt(x)

)

Proof of lemma 5.5: We transform the space RSm using
the vectors defined by the irreps of Sm.

Recall that

L =
∑
j

(
(m− 1)!I −Xj

)
⊗
(
Ct

jCj

)
The outer matrix can be decomposed using the irreps of Sm:

(m− 1)!Ixy =
(m− 1)!

m!

 ∑
r∈[[Sm]]

d(ρr)ρr(x)ρr(y−1)


Xj

xy =
ρ0(x)ρ0(y−1)

m
+ Cjρ

1(x)ρ1(y−1)Ct
j

Summing these decompositions, and using the fact that∑
j C

t
jCj = CtC = I yields the result.

Proof of lemma 5.6: Denote by E, a m× (m− 1)2 matrix
whose j’s row is Cj ⊗ Cj . We need to diagonalize∑

j

Dj ⊗Dj =
∑
j

(
Ct

jCj

)
⊗
(
Ct

jCj

)
=

∑
j

(
Ct

j ⊗ Ct
j

)
(Cj ⊗ Cj) = EtE

The nonzero eigenvalues of EtE are the nonzero eigenvalues
of EEt (this can be deduced from the SVD decomposition
of E). Recall CCt = I − J

m . Therefore,(
EEt

)
ij
= (Ci ⊗ Ci)

(
Ct

j ⊗ Ct
j

)
=
(
CiC

t
j

)2
=
(
CCt

)2
ij
=(

δij −
1

m

)2

=

(
1− 2

m

)
δij +

(
1

m

)2

Therefore, EEt = m−2
m I+ J

m2 , and its eigenvalues are m−1
m

at multiplicity 1 and m−2
m at multiplicity m− 1.

We can verify that the eigenvector of EtE corresponding
to the m−1

m eigenvalue is U0, which is the identity matrix
parsed as a vector. We need to use two simple facts:



• For 3 matrices A,B and C, the term A · B · Ct when
parsed as a vector, is equal to the term (A⊗ C) · B,
when B is parsed as a vector.

• For a matrix C whose rows are {Cj}j , the term∑
j Cj ⊗ Cj equals to the term CtC parsed as a row

vector. This is because CtC =
∑

j C
t
jCj .

Therefore, we get that

(E · U0)j = (Cj ⊗ Cj)U0 = CjIC
t
j = CjC

t
j =

(
CCt

)
jj

=(
I − J

m

)
jj

=
m− 1

m

Which means that EU0 = 1m−1
m and

(
EtE

)
U0 = Et1 · m− 1

m
=

m− 1

m

∑
j

Cj ⊗ Cj

t

Since
∑

j Cj ⊗Cj is CtC parsed as a vector and CtC = I
and U0 is I parsed as a vector, we get that (EtE)U0 =
m−1
m U0.

Proof of corollary 5.7: We have shown that eigenspaces
of L with eigenvalue 0 are ρ0 and ρ1U0. All the other
eigenvalues are positive, so L is PSD.

There is the small matter of G being a block vector instead
of a vector and the usage of the trace operator. Observe that
when the blocks of G are parsed as vectors, the quadratic
form tr (GLGt) translates to G (I ⊗ L)Gt. Therefore, if G
is an IR function, it is of the form of a member of the kernel
of I ⊗ L, parsed as a block vector. The diagonalization of
L implies that G’s Fourier coefficients Ĝ(k) = ExGxρ

k(x)
have the following form:
Ĝ(0) can be anything, Ĝ(1) must be of the form aU0t (a a
column vector), and for k > 1, Ĝ(k) = 0. Reverse Fourier
transform yields:

Gxkl = Bklρ
0(x) +

∑
ts

ρ1ts(x)δslAkt =

1xBkl +
∑
t

Aktρ
1
tl(x)

This means that the function g is g(x) = B + A · ρ1(x)
(where A and B are (m − 1) × (m − 1) matrices), so g is
a linear function in ρ1(x). It can be shown, using Schur’s
lemma, that if g is a consistent function, then either B is
0, or A is 0. We will not show that here. We will show it
using a different technique in the n voter section.

B. Proofs of Lemmas for many voter functions

Proof of lemma 5.8: We only check inputs where there
exists i ∈ [n] such that the i’th vote has changed and the
other votes remain the same. The Y j ⊗ Dj term accounts
for the ith vote that changed and the I terms account for
the other votes not changing.

Proof of lemma 5.10:
1) Let i be such that ri > 1, then, by lemma 5.10

L̂n,i(r̄) =
1

m

n⊗
k=1

Id(rk) ⊗ Im−1

Since L̂n(r̄) =
∑

j L̂
n,j(r̄) and for every j, r̄,

L̂n,j(r̄) ≽ 0, we have L̂n(r̄) ≽ L̂n,i(r̄).
2) We shall focus only on the case where there are exactly

2 distinct i and j such that ri = rj = 1, because
this case produces the minimal eigenvalue. If there
are more than 2 such indices, L̂n(r̄) is equivalent to
the case of 2 indices, tensored by identity and summed
with other PSD matrices.
Recall the diagonalization of L̂(1) (from lemma 5.6)

L̂(1) ≽ 1

m(m− 1)

(
I ⊗ I − 1

m− 1
U0U0t

)
From this, it is easy to deduce the following:

L̂n(r̄) = L̂n,i(r̄) + L̂n,j(r̄) ≽

1

m(m− 1)

(
2I ⊗ I ⊗ I − 1

m− 1

(
AiAit +AjAjt

))
Where Ai is a (m− 1)3× (m− 1) matrix of the form
A(pqr)s = δpqδrs (p, q, r and s are indices going from
1 to m− 1. (pqr) forms the row index of Ai and s is
its column index). Likewise, Aj is a (m−1)3×(m−1)
matrix of the form A(pqr)s = δprδqs. Denote the RHS
as R.
Denote B = Ai + Aj and C = Ai − Aj . It is easy
to see that AiAit + AjAjt = 1

2 (BBt + CCt). It is
also easy to verify that BtC = 0 and therefore B and
C are orthogonal. Therefore, B and C are bases to
orthogonal eigenspaces of R. After normalization, we
get that the minimal eigenvalue of R, corresponding to
the columns of B, is 1

m(m−1) (2−
m

m−1 ) =
m−2

m(m−1)2 .
Important Note: Notice that if m = 2, R has
eigenvalues equal to 0, and therefore we cannot deduce
that the function is a dictatorship for m = 2.

Items 3 and 4 are trivial.
Proof of corollary 5.12: We need to show that only one of
B,A1, ..., An is not zero.

• We show that the function g satisfies a quadratic
constraint. Let MH be MH = Ex∈Hρ1(x). Since g
is consistent, it must be of the form ∀x,∃y, g(x) =
MHρ1(y). Therefore,

g(x)g(x)t = MHρ1(y)ρ1(y)tM t
H = MHM t

H =

Ex∈Hρ1(x)Ey∈Hρ1(y−1) = Ex,y∈Hρ1(xy−1) =

Ez∈Hρ1(z) = MH

.



• We show that w.l.o.g., we may assume that Exg(x) = 0
and therefore B = 0. Indeed, we introduce a dummy
variable y ∈ Sm and define g′(x1, x2, ..., xn, y) =
g(x1y

−1, x2y
−1, ..., xny

−1)ρ1(y). This makes the
function g′ neutral. It is easy to show that
Ex,yg

′(x′y) = 0 and that if IR(g) ≤ ϵ then IR(g′) ≤
ϵ, using our expression for IR(f). After proving the
claim assuming B = 0, we apply it to g′ and get our
result, without this assumption.

• Assuming B = 0,

g(x)g(x)t =
∑
ij

Aiρ1(xi)ρ
1t(xj)A

jt

The summand for i, j, translates to(
Aiρ1(xi)ρ

1t(xj)A
jt
)
tu

=∑
p,q,r,s

ρ1pq(xi)ρ
1
rs(xj)

(
Ai

tpA
j
ruδqs

)
From this expansion we may deduce the Fourier co-
efficient of ggt at r̄ where r̄ is 1 at i and j and 0
otherwise:

ĝgttpruqs(r̄) = (m−1)2
((

Ai
tpA

j
ruδqs

)
+ (Aj

tpA
i
ruδqs)

)
(2)

Since ggt is a constant function and the Fourier ex-
pansion is unique, we get that ĝgt(r̄) must be 0.
Assume by contradiction that there exist indices tp
and ru where Ai

tp ̸= 0, Aj
ru ̸= 0. 2 implies that

Aj
tpA

i
ru = −Ai

tpA
j
ru ̸= 0. Therefore, Aj

tp ̸= 0 and
ĝgttptpqq(r̄) ≃ Ai

tpA
j
tp ̸= 0

VII. ADAPTED VERSION OF FKN[17]

The adapted version of FKN’s theorem is:
Theorem 7.1: Let Lin(Snm) be the space of functions of

the form
∑

i A
iρ1(xi). Let f : Snm → Rm−1×m−1 be a

function such that
• Ef = 0
• There exists a matrix M such that tr(M) = 1 and

∀x ∈ Snm, f(x)f t(x) = M
• f is ϵ close to Lin(Snm).

then f is O(m4ϵ) close to a function of the form Aiρ1(xi).
(distances are L2).

We use the theorem with g under the assumption the Eg =
0 (see the proof of 5.12) and that g is normalized so that
tr(M) = 1. The normalization is dependent on H . Also,
taking into account corollary 5.11 makes the final distance
at most O(m6ϵ).

We give here an outline of the proof. The complete proof
will appear in the journal version.
Outline of the Proof:

The proof follows the second proof shown in [17], and
does not vary from it much. Since we are dealing with

matrices, there are a couple of times when we need to use
union bounds on the entries of the matrices, giving a O(m4)
penalty. It is possible this could be optimized and reduced.

The proof follows these lines: We denote f = f∥ + f⊥,
where f∥ is f ’s projection onto lin(Snm). We define the
function r(x) = M − f∥(x)f

t
∥(x), which measures the

distance between f∥ and consistency. Since f is consistent
and close to f∥, r is typically close to 0 (compare this to the
proof of corollary 5.12). We use the information that r is
quadratic to show that it does not have large deviations, and
therefore very close to 0. To this end, we bound its second
moment by its 4’th moment, using the Beckner-Bonami(BB)
inequality. This cannot happen if more than one of the Ai

coefficients is large. This is the original proof of [17]. In
most stages of the proof, we simply use the entrywise scalar
functions. However, the fact that g returns matrices does
come into play.
A note regarding Beckner-Bonami’s inequality: The ver-
sion of BB’s inequality we use takes the form:

Lemma 7.2: [Beckner (1975), Bonami (1970)] Let G be
a finite group and f : Gn → R be a function whose Fourier
coefficients are supported on the lowest k levels (rank k).
Let p > 2. Then

∥f∥p ≤ ck∥f∥2.

In our case, we apply this inequlaity on the entries of r (rij).
We use p = 2, q = 4 and the rank of r is 2. Unfortunately,
we use G = Sm and because it is a large group, c in the
inequality as stated is exponential in m. However, we have
more information on the function r which we can use. r is
not only of rank 2, but its Fourier coefficients are supported
on combinations of ρ1, we use this to get a polynomial c.

In [18], optimal constants are obtained for BB-type in-
equalities for simple random variables. In Theorem 3.1 in
that paper, it is shown that the optimal constant depends only
on the measure of the smallest atom of the random variable.
It is shown via an optimization argument using Lagrange
multipliers, that the optimum is obtained when the random
variable has exactly 2 different values, and the result follows.

We reprove this theorem with the added constraint that
the Fourier coefficients are supported on ρ1 and p = 2. We
show that the conclusion still holds, and the optimum is
still obtained when the function has 2 distinct values. We
then use a lemma from [19] that states that functions on
the Symmetric group who obtain only 2 distinct values and
whose Fourier coefficients are supported on ρ1 are a linear
combination of the characteristic vectors of cosets of the
subgroups Sjm. This means that the smallest measure of an
atom is 1

m and we are done.

VIII. FUTURE WORK

In upcoming future work, we intend to show the appli-
cation of this scheme for proofs of a robust version of
Arrow’s theorem with relaxed IIA and a robust version



of Gibbard-Satterthwaite’s theorem with relaxed startegy
proofness for any SCF’s on any number of alternatives.

Some interesting future reasearch directions may include
an application of this technique to the generalized problem,
known as judgement aggregation. In that setting, we have a
permissible opinion space X ⊆ [k]m and for some such
X , for functions f : Xn → X , independency implies
dictatorship. It is known for which X this holds, but there
are no known robust versions for general opinion spaces X .

As is, our proof could be generalized for groups other
than Sm, and also other types of independency (such as
independency of ranking of k-tuples).

As mentioned earlier, our result can be interpreted as a
2 query dictatorship tester, for functions Snm → Sm/H . It
may be interesting to see whether this has any computational
implications.
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